Serveur d'exploration cluster fer-soufre

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus pacificus DY20341T from Deep-Sea Hydrothermal Sediments.

Identifieur interne : 000078 ( Main/Exploration ); précédent : 000077; suivant : 000079

Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus pacificus DY20341T from Deep-Sea Hydrothermal Sediments.

Auteurs : Xiang Zeng [République populaire de Chine] ; Xiaobo Zhang [République populaire de Chine] ; Zongze Shao [République populaire de Chine]

Source :

RBID : pubmed:31935923

Descripteurs français

English descriptors

Abstract

The hyperthermo-piezophilic archaeon Palaeococcus pacificus DY20341T, isolated from East Pacific hydrothermal sediments, can utilize elemental sulfur as a terminal acceptor to simulate growth. To gain insight into sulfur metabolism, we performed a genomic and transcriptional analysis of Pa. pacificus DY20341T with/without elemental sulfur as an electron acceptor. In the 2001 protein-coding sequences of the genome, transcriptomic analysis showed that 108 genes increased (by up to 75.1 fold) and 336 genes decreased (by up to 13.9 fold) in the presence of elemental sulfur. Palaeococcus pacificus cultured with elemental sulfur promoted the following: the induction of membrane-bound hydrogenase (MBX), NADH:polysulfide oxidoreductase (NPSOR), NAD(P)H sulfur oxidoreductase (Nsr), sulfide dehydrogenase (SuDH), connected to the sulfur-reducing process, the upregulation of iron and nickel/cobalt transfer, iron-sulfur cluster-carrying proteins (NBP35), and some iron-sulfur cluster-containing proteins (SipA, SAM, CobQ, etc.). The accumulation of metal ions might further impact on regulators, e.g., SurR and TrmB. For growth in proteinous media without elemental sulfur, cells promoted flagelin, peptide/amino acids transporters, and maltose/sugar transporters to upregulate protein and starch/sugar utilization processes and riboflavin and thiamin biosynthesis. This indicates how strain DY20341T can adapt to different living conditions with/without elemental sulfur in the hydrothermal fields.

DOI: 10.3390/ijms21010368
PubMed: 31935923
PubMed Central: PMC6981617


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic Adaptation to Sulfur of Hyperthermophilic
<i>Palaeococcus pacificus</i>
DY20341
<sup>T</sup>
from Deep-Sea Hydrothermal Sediments.</title>
<author>
<name sortKey="Zeng, Xiang" sort="Zeng, Xiang" uniqKey="Zeng X" first="Xiang" last="Zeng">Xiang Zeng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005</wicri:regionArea>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiaobo" sort="Zhang, Xiaobo" uniqKey="Zhang X" first="Xiaobo" last="Zhang">Xiaobo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005</wicri:regionArea>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of public health, Xinjiang Medical University, No.393 Xinyi Road, Urumchi 830011, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of public health, Xinjiang Medical University, No.393 Xinyi Road, Urumchi 830011</wicri:regionArea>
<wicri:noRegion>Urumchi 830011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shao, Zongze" sort="Shao, Zongze" uniqKey="Shao Z" first="Zongze" last="Shao">Zongze Shao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005</wicri:regionArea>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31935923</idno>
<idno type="pmid">31935923</idno>
<idno type="doi">10.3390/ijms21010368</idno>
<idno type="pmc">PMC6981617</idno>
<idno type="wicri:Area/Main/Corpus">000162</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000162</idno>
<idno type="wicri:Area/Main/Curation">000162</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000162</idno>
<idno type="wicri:Area/Main/Exploration">000162</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic Adaptation to Sulfur of Hyperthermophilic
<i>Palaeococcus pacificus</i>
DY20341
<sup>T</sup>
from Deep-Sea Hydrothermal Sediments.</title>
<author>
<name sortKey="Zeng, Xiang" sort="Zeng, Xiang" uniqKey="Zeng X" first="Xiang" last="Zeng">Xiang Zeng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005</wicri:regionArea>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Xiaobo" sort="Zhang, Xiaobo" uniqKey="Zhang X" first="Xiaobo" last="Zhang">Xiaobo Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005</wicri:regionArea>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>School of public health, Xinjiang Medical University, No.393 Xinyi Road, Urumchi 830011, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of public health, Xinjiang Medical University, No.393 Xinyi Road, Urumchi 830011</wicri:regionArea>
<wicri:noRegion>Urumchi 830011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shao, Zongze" sort="Shao, Zongze" uniqKey="Shao Z" first="Zongze" last="Shao">Zongze Shao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005</wicri:regionArea>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of molecular sciences</title>
<idno type="eISSN">1422-0067</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Hydrogenase (genetics)</term>
<term>Hydrogenase (metabolism)</term>
<term>Hydrothermal Vents (microbiology)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Oceans and Seas (MeSH)</term>
<term>Sulfur (metabolism)</term>
<term>Thermococcaceae (genetics)</term>
<term>Thermococcaceae (metabolism)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Cheminées hydrothermales (microbiologie)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Hydrogenase (génétique)</term>
<term>Hydrogenase (métabolisme)</term>
<term>Océans et mers (MeSH)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Soufre (métabolisme)</term>
<term>Thermococcaceae (génétique)</term>
<term>Thermococcaceae (métabolisme)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hydrogenase</term>
<term>Iron-Sulfur Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Hydrogenase</term>
<term>Iron-Sulfur Proteins</term>
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Thermococcaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Hydrogenase</term>
<term>Protéines bactériennes</term>
<term>Thermococcaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Thermococcaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Cheminées hydrothermales</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Hydrothermal Vents</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Ferrosulfoprotéines</term>
<term>Hydrogenase</term>
<term>Protéines bactériennes</term>
<term>Soufre</term>
<term>Thermococcaceae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Oceans and Seas</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Océans et mers</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The hyperthermo-piezophilic archaeon
<i>Palaeococcus pacificus</i>
DY20341
<sup>T</sup>
, isolated from East Pacific hydrothermal sediments, can utilize elemental sulfur as a terminal acceptor to simulate growth. To gain insight into sulfur metabolism, we performed a genomic and transcriptional analysis of
<i>Pa. pacificus</i>
DY20341
<sup>T</sup>
with/without elemental sulfur as an electron acceptor. In the 2001 protein-coding sequences of the genome, transcriptomic analysis showed that 108 genes increased (by up to 75.1 fold) and 336 genes decreased (by up to 13.9 fold) in the presence of elemental sulfur.
<i>Palaeococcus pacificus</i>
cultured with elemental sulfur promoted the following: the induction of membrane-bound hydrogenase (MBX), NADH:polysulfide oxidoreductase (NPSOR), NAD(P)H sulfur oxidoreductase (Nsr), sulfide dehydrogenase (SuDH), connected to the sulfur-reducing process, the upregulation of iron and nickel/cobalt transfer, iron-sulfur cluster-carrying proteins (NBP35), and some iron-sulfur cluster-containing proteins (SipA, SAM, CobQ, etc.). The accumulation of metal ions might further impact on regulators, e.g., SurR and TrmB. For growth in proteinous media without elemental sulfur, cells promoted flagelin, peptide/amino acids transporters, and maltose/sugar transporters to upregulate protein and starch/sugar utilization processes and riboflavin and thiamin biosynthesis. This indicates how strain DY20341
<sup>T</sup>
can adapt to different living conditions with/without elemental sulfur in the hydrothermal fields.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31935923</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1422-0067</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jan</Month>
<Day>06</Day>
</PubDate>
</JournalIssue>
<Title>International journal of molecular sciences</Title>
<ISOAbbreviation>Int J Mol Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic Adaptation to Sulfur of Hyperthermophilic
<i>Palaeococcus pacificus</i>
DY20341
<sup>T</sup>
from Deep-Sea Hydrothermal Sediments.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E368</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/ijms21010368</ELocationID>
<Abstract>
<AbstractText>The hyperthermo-piezophilic archaeon
<i>Palaeococcus pacificus</i>
DY20341
<sup>T</sup>
, isolated from East Pacific hydrothermal sediments, can utilize elemental sulfur as a terminal acceptor to simulate growth. To gain insight into sulfur metabolism, we performed a genomic and transcriptional analysis of
<i>Pa. pacificus</i>
DY20341
<sup>T</sup>
with/without elemental sulfur as an electron acceptor. In the 2001 protein-coding sequences of the genome, transcriptomic analysis showed that 108 genes increased (by up to 75.1 fold) and 336 genes decreased (by up to 13.9 fold) in the presence of elemental sulfur.
<i>Palaeococcus pacificus</i>
cultured with elemental sulfur promoted the following: the induction of membrane-bound hydrogenase (MBX), NADH:polysulfide oxidoreductase (NPSOR), NAD(P)H sulfur oxidoreductase (Nsr), sulfide dehydrogenase (SuDH), connected to the sulfur-reducing process, the upregulation of iron and nickel/cobalt transfer, iron-sulfur cluster-carrying proteins (NBP35), and some iron-sulfur cluster-containing proteins (SipA, SAM, CobQ, etc.). The accumulation of metal ions might further impact on regulators, e.g., SurR and TrmB. For growth in proteinous media without elemental sulfur, cells promoted flagelin, peptide/amino acids transporters, and maltose/sugar transporters to upregulate protein and starch/sugar utilization processes and riboflavin and thiamin biosynthesis. This indicates how strain DY20341
<sup>T</sup>
can adapt to different living conditions with/without elemental sulfur in the hydrothermal fields.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Xiang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Xiaobo</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>School of public health, Xinjiang Medical University, No.393 Xinyi Road, Urumchi 830011, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Zongze</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No.178 Daxue Road, Xiamen 361005, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Int J Mol Sci</MedlineTA>
<NlmUniqueID>101092791</NlmUniqueID>
<ISSNLinking>1422-0067</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.12.7.2</RegistryNumber>
<NameOfSubstance UI="D006864">Hydrogenase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006864" MajorTopicYN="N">Hydrogenase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060086" MajorTopicYN="N">Hydrothermal Vents</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009792" MajorTopicYN="N">Oceans and Seas</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019710" MajorTopicYN="N">Thermococcaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Palaeococcus pacificus DY20341T</Keyword>
<Keyword MajorTopicYN="N">elemental sulfur</Keyword>
<Keyword MajorTopicYN="N">hydrogenase</Keyword>
<Keyword MajorTopicYN="N">iron–sulfur cluster</Keyword>
<Keyword MajorTopicYN="N">sulfur metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>12</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>12</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>1</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31935923</ArticleId>
<ArticleId IdType="pii">ijms21010368</ArticleId>
<ArticleId IdType="doi">10.3390/ijms21010368</ArticleId>
<ArticleId IdType="pmc">PMC6981617</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Methods Enzymol. 2001;330:319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11210511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 23;320(5879):1046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 8;286(5438):306-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Jun 24;100(13):7545-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12792025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Apr 23;16(5):9167-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25915030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Jun;193(12):3109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Nov;192(21):5841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20802041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2007 Jul;9(7):1836-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17564616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2000 Nov;38(4):684-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(13):4580-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19447963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2014 Aug 21;19(8):12789-813</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25153879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2016 Feb 7;390:117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26656108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Oct 15;285(42):31923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709756</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Archaea. 2002 Mar;1(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15803660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2000 Mar;50 Pt 2:489-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2005 Feb 14;346:1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1993 May 25;21(10):2515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8506147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 16;315(5814):1003-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17303759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Dec;193(23):6498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2013;67:437-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23808334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Announc. 2015 Sep 17;3(5):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26383653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 10;278(2):983-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12426307</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Mar;193(6):1481-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21217005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2009 Nov;13(6):905-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19763742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2008 Sep 17;(19):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Extremophiles. 2016 May;20(3):351-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27016195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Mar;15(3):352-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15710748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Aug;193(16):4297-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21705594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1997 Oct;7(10):986-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9331369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2011 Oct;193(19):5544-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2003 Jun;179(6):394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(2):332-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jun;69(6):3119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12788706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Nov;22(11):2297-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16079249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Sep 14;282(37):26963-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17640871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Jun;19(6):1124-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19420381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010 Nov 08;5(11):e13871</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21079785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Jul;185(13):3935-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12813088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(10):117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15461805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2006 Sep;273(18):4170-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16930136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Microbiol Biotechnol. 1999 Aug;1(1):101-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10941791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 27;6:34212</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27670643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Jun;11(6):M111.015420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22232491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D744-D749</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2008 Sep;190(3):247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18470695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2007 Jun;189(12):4431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17449625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Oct;74(20):6447-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18723649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Mar 25;307(5717):1969-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15790858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2013 Jun;63(Pt 6):2155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23104364</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Mar;191(5):1490-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19114487</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zeng, Xiang" sort="Zeng, Xiang" uniqKey="Zeng X" first="Xiang" last="Zeng">Xiang Zeng</name>
</noRegion>
<name sortKey="Shao, Zongze" sort="Shao, Zongze" uniqKey="Shao Z" first="Zongze" last="Shao">Zongze Shao</name>
<name sortKey="Zhang, Xiaobo" sort="Zhang, Xiaobo" uniqKey="Zhang X" first="Xiaobo" last="Zhang">Xiaobo Zhang</name>
<name sortKey="Zhang, Xiaobo" sort="Zhang, Xiaobo" uniqKey="Zhang X" first="Xiaobo" last="Zhang">Xiaobo Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/IronSulferCluV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000078 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000078 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    IronSulferCluV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31935923
   |texte=   Metabolic Adaptation to Sulfur of Hyperthermophilic Palaeococcus pacificus DY20341T from Deep-Sea Hydrothermal Sediments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31935923" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a IronSulferCluV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:13:39 2020. Site generation: Sat Nov 21 15:14:05 2020